
Adafruit Si4713 FM Radio Transmitter with RDS/RDBS Support
Created by lady ada

Last updated on 2014-07-09 11:00:12 AM EDT



2
3
7
7
7
7
8
9
9

10
11
14
14
14
15
18
20
20
20
21
21
21
23
23
23
23

Guide Contents

Guide Contents
Overview
Pinouts
Audio Inputs
Power Pins
Interface Pins

Extra GPIO Pins
Assembly

Prepare the header strip:
Add the breakout board:
And Solder!

Test & Usage
Arduino Wiring
Download Adafruit_Si4713
Load Demo
Using the RPS Scanning function
Library Reference

Radio Transmitter control
RPS (Radio Power Sensing)
RDS/RBDS (Radio Data Broadcast)
GPIO Control
Advanced!

Downloads
Datasheets
Layout Print
Schematic

© Adafruit Industries https://learn.adafruit.com/adafruit-si4713-fm-radio-transmitter-with-
rds-rdbs-support

Page 2 of 24



Overview

Yaaar! Become your very own pirate radio station with this FM radio transmitter. This
breakout board, based on the best-of-class Si4713, is an all-in-one stereo audio FM
transmitter that can also transmit RDS/RBDS data!

© Adafruit Industries https://learn.adafruit.com/adafruit-si4713-fm-radio-transmitter-with-
rds-rdbs-support

Page 3 of 24



Wire up to your favorite microcontroller (we suggest an Arduino) to the I2C data lines to set
the transmit frequency and play line-level audio into the stereo headphone jack. Boom! Now
you are the media. Listen using any FM receiver such as your car or pocket radio receiver -
this is an easy way to transmit audio up to about 10 meters / 30 feet away.

© Adafruit Industries https://learn.adafruit.com/adafruit-si4713-fm-radio-transmitter-with-
rds-rdbs-support

Page 4 of 24



This transmitter even has RDS/RBDS support - that's text/data transmissions that many
modern FM receivers support. (It's how some car radios can display the FM station and
current song playing). You can transmit just about any text you want, set the station identifier
as well as the 'freeform' buffer.

© Adafruit Industries https://learn.adafruit.com/adafruit-si4713-fm-radio-transmitter-with-
rds-rdbs-support

Page 5 of 24



 

Best of all, you'll be up and running in minutes with our awesome Arduino library, example
code and tutorial!

© Adafruit Industries https://learn.adafruit.com/adafruit-si4713-fm-radio-transmitter-with-
rds-rdbs-support

Page 6 of 24



Pinouts
There's a couple pins on this here breakout, lets cover them all in groupings by 'type'

Audio Inputs
LIN - this is the line level LEFT input. Its connected to the headphone jack as well but
in case you want to wire directly without a chunky cable, pipe line level (~0.7 Vpp)
audio into here. There's an AC blocking capacitor on board so it can be DC biased
RIN - same as LIN but the RIGHT input.

Power Pins
Vin - this is the power input pin. You can power the chip from 3-5VDC. Ideally you
should use the same voltage you use for logic levels. For an Arduino, that's usually 5V
GND - this is power and logic ground, connect to your microcontroller's ground pin
3Vo  - this is the output from the onboard regulator, 3.3V nominal. You can use this if
you need up to 100mA of 3V regulated voltage

Interface Pins
The FM transmitter chip requires a microcontroller for setting it up unlike pure-analog
solutions that have a tuning potentiometer. The trade off is some code is needed, but the
output is digitally tuned so its much more precise.
Our codebase uses I2C to communicate. The chip supports SPI as well but it was annoying

© Adafruit Industries https://learn.adafruit.com/adafruit-si4713-fm-radio-transmitter-with-
rds-rdbs-support

Page 7 of 24



 

enough to support just I2C so we don't have code examples for SPI!

All the interface input pins are 5V friendly, and can be used with 3-5V logic

RST - This is the Reset pin. You must have this pin toggle before starting to
communicate with the chip. When at logic 0, the chip is in reset.
CS - This is the Chip select pin, used in SPI mode. It also determines the I2C address.
When pulled high (it is by default) the I2C address is 0x63. If this pin is shorted to
ground, the I2C address is 0x11
SCL - this is the I2C clock pin, connect to SCL on your microcontroller.
SDA - this is the I2C data pin, connect to SDA on your microcontroller.

Extra GPIO Pins
There's also two "GPIO" pins, you can use these to blink LEDs. The initial state of these pin
sets up the chip for Analog Mode so don't short them to ground or VCC during reset. They
are 3V output only!

GP1 - this is GPIO #1
GP2 - this is GPIO #2

GPIO #3 is used for the 32Khz clock generator onboard.

© Adafruit Industries https://learn.adafruit.com/adafruit-si4713-fm-radio-transmitter-with-
rds-rdbs-support

Page 8 of 24



Assembly

Prepare the header strip:
Cut the strip to length if necessary. It will be
easier to solder if you insert it into a
breadboard - long pins down

© Adafruit Industries https://learn.adafruit.com/adafruit-si4713-fm-radio-transmitter-with-
rds-rdbs-support

Page 9 of 24

http://learn.adafruit.com/assets/17639


Add the breakout board:
Place the breakout board over the pins so that
the short pins poke through the breakout pads

© Adafruit Industries https://learn.adafruit.com/adafruit-si4713-fm-radio-transmitter-with-
rds-rdbs-support

Page 10 of 24

http://learn.adafruit.com/assets/17640


And Solder!
Be sure to solder all pins for reliable electrical
contact.

(For tips on soldering, be sure to check out
our Guide to Excellent
Soldering (http://adafru.it/aTk)).

© Adafruit Industries https://learn.adafruit.com/adafruit-si4713-fm-radio-transmitter-with-
rds-rdbs-support

Page 11 of 24

http://learn.adafruit.com/assets/17641
http://learn.adafruit.com/assets/17642
http://learn.adafruit.com/assets/17643
http://learn.adafruit.com/adafruit-guide-excellent-soldering


You're done! Check your solder joints visually
and continue onto the antenna

An antenna is required! We provide a 1meter
long wire but you can also use a shorter or
longer piece as desired.
Strip a few mm from the end

Hook the exposed wire end into the ANT hole

© Adafruit Industries https://learn.adafruit.com/adafruit-si4713-fm-radio-transmitter-with-
rds-rdbs-support

Page 12 of 24

http://learn.adafruit.com/assets/17644
http://learn.adafruit.com/assets/17645
http://learn.adafruit.com/assets/17646


 

Solder it in!

Done!

© Adafruit Industries https://learn.adafruit.com/adafruit-si4713-fm-radio-transmitter-with-
rds-rdbs-support

Page 13 of 24

http://learn.adafruit.com/assets/17647
http://learn.adafruit.com/assets/17648


Test & Usage
Arduino Wiring

You can easily wire this breakout to any microcontroller, we'll be using an Arduino. For
another kind of microcontroller, just make sure it has I2C, then port the code - once the low
level i2c functions are adapted the rest should 'fall into place'

 (http://adafru.it/dBn)

 (http://adafru.it/dBo)

Connect Vin to the power supply, 3-5V is fine. Use the same voltage that the
microcontroller logic is based off of. For most Arduinos, that is 5V
Connect GND to common power/data ground
Connect the SCL pin to the I2C clock SCL pin on your Arduino. On an UNO & '328
based Arduino, this is also known as A5, on a Mega it is also known as digital 21 and
on a Leonardo/Micro, digital 3
Connect the SDA pin to the I2C data SDA pin on your Arduino. On an UNO & '328
based Arduino, this is also known as A4, on a Mega it is also known as digital 20  and
on a Leonardo/Micro, digital 2
Connect the RST pin to digital 12 - you can change this later but we want to match the
tutorial for now

The Si4713 has a default I2C address of 0x63 - you can change it to 0x11 by connecting CS
to ground but don't do that yet! Get the demo working first before making changes

Download Adafruit_Si4713
To begin reading sensor data, you will need to download Adafruit_Si4713 Library from our
github repository (http://adafru.it/dBp). You can do that by visiting the github repo and
manually downloading or, easier, just click this button to download the zip

Download Adafruit_Si4713
Arduino Library

http://adafru.it/dBq

Rename the uncompressed folder Adafruit_Si4713 and check that the Adafruit_Si4713
folder contains Adafruit_Si4713.cpp and Adafruit_Si4713.h

Place the Adafruit_Si4713 library folder your arduinosketchfolder/libraries/ folder. 
You may need to create the libraries subfolder if its your first library. Restart the IDE.

© Adafruit Industries https://learn.adafruit.com/adafruit-si4713-fm-radio-transmitter-with-
rds-rdbs-support

Page 14 of 24

https://learn.adafruit.com/assets/17127
/assets/17652
https://github.com/adafruit/Adafruit-Si4713-Library
https://github.com/adafruit/Adafruit-Si4713-Library/archive/master.zip


We also have a great tutorial on Arduino library installation at:
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use (http://adafru.it/aYM)

Load Demo
Open up File->Examples->Adafruit_Si4713->HTU21DFtest and upload to your
Arduino wired up to the sensor

You may want to update the FM station transmission. By default the library transmits on
102.3MHz FM, but that might be 'taken' in your area. 

Find this line

 #define FMSTATION 10230 // 10230 == 102.30 MHz

And change it to an unused frequency. This number is in 10KHz so for example 88.1MHz is
written as 8810

Upload it to your Arduino and open up the Serial console at 9600 baud

© Adafruit Industries https://learn.adafruit.com/adafruit-si4713-fm-radio-transmitter-with-
rds-rdbs-support

Page 15 of 24

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use


© Adafruit Industries https://learn.adafruit.com/adafruit-si4713-fm-radio-transmitter-with-
rds-rdbs-support

Page 16 of 24



As long as you get to the RDS On! message that means everything works, pipe some
audio into the 3.5mm jack and make sure you see the InLevel audio volume range from 0
to about -10 (dB)

The fastest way to test the RDS message sending is using an RTL-SDR (that's how we
debugged the breakout!) (http://adafru.it/dBr) or a phone/radio that can do RDS decoding

© Adafruit Industries https://learn.adafruit.com/adafruit-si4713-fm-radio-transmitter-with-
rds-rdbs-support

Page 17 of 24

https://learn.adafruit.com/getting-started-with-rtl-sdr-and-sdr-sharp/sdr-number-fm-radio


Using the RPS Scanning function

The Si4713 has the ability 'scan' the FM band and measure the input power. You can use the
RPS functionality to locate a good unused station. Find this section in the adaradio demo and
uncomment the for loop:

Reupload and look at the serial console:

  // Uncomment below to scan power of entire range from 87.5 to 108.0 MHz

/*

  for (uint16_t f  = 8750; f<10800; f+=10) {

   radio.readTuneMeasure(f);

   Serial.print("Measuring "); Serial.print(f); Serial.print("...");

   radio.readTuneStatus();

   Serial.println(radio.currNoiseLevel);

   }

*/

© Adafruit Industries https://learn.adafruit.com/adafruit-si4713-fm-radio-transmitter-with-
rds-rdbs-support

Page 18 of 24



The larger the number the higher the transmission power. For example, 96.3MHz is a higher
number than the others (FYI, its Univision 96.3 FM (http://adafru.it/dBs)!) whereas 95.1 MHz is
nice as low, that's not used for any transmission. Try to find a number that's also not

© Adafruit Industries https://learn.adafruit.com/adafruit-si4713-fm-radio-transmitter-with-
rds-rdbs-support

Page 19 of 24

http://en.wikipedia.org/wiki/WXNY-FM


surrounded by high numbers, since it can get 'drowned out' by the nearby frequencies.

Library Reference

Radio Transmitter control
Start out by initializing the Si4713 chipset with

 begin()

This will return true if the radio initialized, and false if the radio was not found. Check your
wiring if its not 'showing up'

Then you can turn on the radio transmitter with

setTXpower(txpwr)

the txpwr number is the dB�V transmission power. You can set this to 88-115dB�V or 0 (for
off)

Of course, you'll want to tune the transmitter! Do that with

 tuneFM(freq)

That will set the output frequency, in 10's of KHz. So if you want to tune to 101.9 the
frequency value is 10190

You can check in on the radio with 

 readTuneStatus()

Whcih will set the currFreq currdBuV adnd currAntCap variables in the radio object. The
first two are the frequency and power output, the third variable is the tuning antenna
capacitor it set for the best output. This number will vary with antenna size and frequency.

RPS (Radio Power Sensing)
This function is used with two procedures. 

 readTuneMeasure(freq)

begins the measurement, freq is in units of 10KHz so 88.1MHz is written in as 8810
Then you have to call 

© Adafruit Industries https://learn.adafruit.com/adafruit-si4713-fm-radio-transmitter-with-
rds-rdbs-support

Page 20 of 24



 readTuneStatus()

which will wait until the chip has measured the data and stick it into the currNoiseLevel
variable

RDS/RBDS (Radio Data Broadcast)
The Si4713 has great support for sending RDS data and we made it real easy too. Initialize
the subsystem with

 beginRDS()

Then you can set the "station name" with

 setRDSstation("AdaRadio")

The radio station name is up to 8 characters
You can also send the main buffer which usually contains the song name/artist.

 setRDSbuffer( "Adafruit g0th Radio!")

You can send up to 32 characters, but you can continuously send new data, just wait a few
seconds before each data rewrite so the listener's radio has received all the data

GPIO Control
There's two GPIO pins you can use to blink LEDs. They are GPIO1 and GPIO2 - GPIO3 is
used for the oscillator. To set them to be outputs call

 setGPIOctrl(bitmask)

where the bitmask has a 1 bit for each of the two pins. For example to set GPIO2 to be an
output use setGPIOctrl((1<<2)) to set both outputs, use setGPIOctrl((1<<2) || (1<<1))

Then you can set the output with

 setGPIO(bitmask)

same idea with the bitmask, to turn both on, use setGPIOctrl((1<<2) || (1<<1)). To turn
GPIO2 on and GPIO1 off, setGPIOctrl(1<<2)

Advanced!

We, by default, use the built-in AGC (auto-gain control) system so the audio level is maxed
out. This may be annoying to you if have a good quality line level and the volume is

© Adafruit Industries https://learn.adafruit.com/adafruit-si4713-fm-radio-transmitter-with-
rds-rdbs-support

Page 21 of 24



 

fluctuating (it should be quiet, but isnt)

in the Adafruit_Si4713.cpp file find these lines

 //setProperty(SI4713_PROP_TX_ACOMP_ENABLE, 0x02); // turn on
limiter, but no dynamic ranging
setProperty(SI4713_PROP_TX_ACOMP_ENABLE, 0x0); // turn on limiter
and AGC

and uncomment the first one, and comment the second. This will turn off the AGC

© Adafruit Industries https://learn.adafruit.com/adafruit-si4713-fm-radio-transmitter-with-
rds-rdbs-support

Page 22 of 24



Downloads
Datasheets

Si4713 Datasheet  (http://adafru.it/dBc)(this does not include any software interfacing
details)
Si47xx Programming guide (http://adafru.it/dBd) - contains all the nitty-gritty details on
command data packets etc. 

Layout Print
Dimensions in Inches

Schematic

© Adafruit Industries https://learn.adafruit.com/adafruit-si4713-fm-radio-transmitter-with-
rds-rdbs-support

Page 23 of 24

http://www.adafruit.com/datasheets/Si4712-13-B30.pdf
http://www.adafruit.com/datasheets/SiLabs Programming guide AN332.pdf


 

© Adafruit Industries Last Updated: 2014-07-09 11:00:15 AM EDT Page 24 of 24


	Guide Contents
	Overview
	Pinouts
	Audio Inputs
	Power Pins
	Interface Pins
	Extra GPIO Pins

	Assembly
	Prepare the header strip:
	Add the breakout board:
	And Solder!

	Test & Usage
	Arduino Wiring
	Download Adafruit_Si4713
	Load Demo
	Using the RPS Scanning function
	Library Reference
	Radio Transmitter control
	RPS (Radio Power Sensing)
	RDS/RBDS (Radio Data Broadcast)
	GPIO Control
	Advanced!

	Downloads
	Datasheets
	Layout Print
	Schematic

